Posted on

Mitigating Risk through Food Packaging

By George G. Misko and Natalie E. Rainer, Keller and Heckman LLC

Historically, the main function of food packaging has been to safeguard food by providing a physical barrier to help maintain food and beverages in a sanitary condition. Over the years, advances in food packaging technology have resulted in packaging that provides additional protection and other benefits. These more recent innovations include susceptors to aid in the browning of foods cooked in microwave ovens, oxygen scavengers/emitters, ethylene scavengers, time-temperature sensors, and biosensors that can help to prolong shelf life and/or monitor the condition of food.  In fact, it is clear that over the past 100 years or more, packaging technology and food processing equipment has been a major contributor to the manner in which food products of all sorts safely reach the dinner tables of Americans and people throughout the world, while lessening the environmental footprint of this industry.  Indeed, even in these days of the coronavirus pandemic, the U.S. Food and Drug Administration (FDA) has stated that “[T]here is no evidence of food packaging being associated with the transmission of COVID-19.” (1)

(1) See the FDA information sheet, titled, “Shopping for Food During the COVID-19 Pandemic – Information for
Consumers.”

The U.S. and other jurisdictions around the world have implemented food packaging regulations to assure that packaging materials are safe for use and that no off-odors or tastes are imparted from the packaging to food or beverages. And as technological advances in food packaging provide improvements in food quality and safety, some of the regulations governing the composition and use of food packaging regulations have been changed to accommodate these advances. This article will focus on U.S. food laws governing food packaging materials and revisions to those laws necessitated by technological advances. First, though, we provide a brief description of the manner in which food packaging is regulated in the U.S. and the information that is required to assure the safety of food contact materials.

U.S. Food Packaging Laws

The history of formal regulation of food packaging in the U.S. began with the passage of the Food Additives Amendment of 1958.  Prior to 1958, customers sometimes insisted on being assured of a package’s safety and utility by asking to see some documentation from FDA or the U. S. Department of Agriculture (USDA) indicating that it had reviewed and found that the intended use of the materials would not adulterate food or, put another way, were safe for their intended use.  

The Food Additives Amendment of 1958 added, in part, a new section to the Federal Food, Drug, and Cosmetic Act (FD&C Act) that defined the term “food additive” as “any substance the intended use of which results or may reasonably be expected to result, directly or indirectly, in its becoming a component or otherwise affecting the characteristics of any food” unless that substance is Generally Recognized as Safe (GRAS) or subject to one of a number of exceptions or exclusions listed in the Act.”(2) As a result, all food contact substances that may reasonably be expected to migrate to food are regulated as food additives. Conversely, food packaging substances that are not reasonably expected to become components of food are not by definition “food additives” and may be used without prior authorization or clearance by FDA.

 (2) See Section 201(s) of the Federal Food, Drug, and Cosmetic Act.

Food contact substances (FCSs) that are considered food additives must be authorized for use in food packaging by FDA through a food additive regulation or a Food Contact Notification (FCN). The food additive petition process entails clearing food additives (including food packaging materials that meet the definition of a food additive) through a notice-and-comment rulemaking process. Information required to submit a food additive petition for packaging materials includes: the identity and composition of the substance of interest; a description of the manufacturing process; information on its intended use (such as food types, temperature conditions at the time of packaging and during use, and the expected duration of contact with food); and chemistry and toxicology data supporting the safety of that food additive for its intended use. The petition should also include test methods used to verify specifications for the raw materials and the finished products. Finally, the petitioner must include an environmental assessment to established whether the manufacture or use of the substance as intended will likely result in any undue impact that will require further study. Once a food additive is cleared through this process, FDA publishes a regulation, which can be relied upon by the petitioner as well as other manufacturers and users of the additive provided any limitations and specifications listed in the regulation are met. 

The FCN process largely supplanted the petitioning process with passage of the FDA Modernization Act of 1997. Data requirements for an FCN are about the same as those for a food additive petition with respect to the need to estimate dietary intake for an additive and establish safety through the provision of toxicity data adequate to support the estimated exposure. In addition, data identifying the FCS, its intended use manufacturing process and the like are very much required as in the petition process. The primary difference between the FCN and FAP process is that FCNs are proprietary, i.e., they can only be relied upon by the manufacturer of the FCS identified in the FCN and by its customers. Third parties who manufacture the same substance are required to submit their own FCN to be enabled to reach the same market. The other major difference is that  where it could take literally years for FDA to grant a petition, an FCN automatically becomes effective 120 days after it has been accepted for filing by the Agency, unless FDA objects in writing prior to the effective date.

Assuring Safety

FDA applies a tiered approach to the toxicity data needed to support safety of food-contact materials. That is, the higher the level of estimated dietary intake to a substance, the greater the toxicity data needed to support safety.  

Another important consideration with respect to safety is the statutory and regulatory requirement that food contact materials be manufactured in such a way as not to result in the adulteration of food, i.e., be of a purity suitable for the intended use, as  required by FDA’s Good Manufacturing Practices (GMP) regulation for food packaging materials. (3)

(3)  See Title 21 of the Code of Federal Regulations, Section 174.5. 

The suitable purity requirement dictates that FCSs may not impart anything to food that may cause it to be harmful or deleterious to health or result in an off-taste or -odor in food. To meet this requirement, the manufacturer must consider the safety of foreseeable impurities in the FCS, including residual monomers, starting reactants, catalysts, and reaction byproducts and degradation products. 

New Technologies

As new types of food packaging are developed based on technological advances, the safety of the materials used in these packages need to be evaluated. In some cases, revisions in food packaging regulations were made to assure the safety of the food in contact with new technology. We will examine some of these technologies and what new requirements, if any, were implemented to assure their safety.

Microwave Susceptors. The introduction of susceptors in microwave packaging resulted in higher cooking temperatures, which could be used to crisp and brown food by cooking it in a microwave oven. FDA food packaging regulations use the term “Conditions of Use” to describe the typical temperature conditions under which food products may be used in contact with packaging materials or articles intended to process or hold food. In April 2006, FDA expanded its list of Conditions of Use to include two additional categories. One of the new categories, Condition of Use J (“Cooking at temperatures exceeding 250°F”), is applicable to microwave heat susceptor materials. The following year, in December 2007, FDA updated its chemistry guidance for preparing FCN submissions. The new chemistry guidance includes specific protocols on testing for dual ovenable, microwaveable, and microwave heat susceptor materials.

Antimicrobial Agents. The safety of antimicrobials used in food packaging is regulated by FDA similar to other food additives; however, they may also require registration with the U.S. Environmental Protection Agency (EPA) under Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA). Additionally, antimicrobials used in or on permanent or semi-permanent food contact surfaces, which are not intended to have an ongoing effect on the food contact surface, are regulated by FDA as food additives. If, however, the intended effect is ongoing, that is, intended to preserve the article from microbes or the protection of the user, EPA exercises jurisdiction over the use and food safety issue. 

In all cases, except those involving processed food, the antimicrobial used will be considered a pesticide for purposes of FIFRA and will require registration with EPA regardless of FDA’s jurisdiction over the matter. In addition, antimicrobials added to packaging materials with the expressed intent of migrating into the food to increase its shelf life by retarding spoilage may be considered food preservatives by FDA or USDA, if meat or poultry, and require labeling of the food product.   

Biobased and Biodegradable Plastics. As interest in sustainability has increased, the use of biobased and biodegradable plastics in food packaging is expanding. “Biobased” means related to or based out of natural, renewable, or living sources, while “biodegradable” means capable of being broken down naturally to basic elemental components (water, biomass, and gas) with the aid of microorganisms. “Biobased plastics” are plastics manufactured from renewable biomass, such as vegetable oil, cornstarch, pea starch, and microbiota. Biobased plastics can also be biodegradable.

While biobased plastics are required to comply with the same regulations with respect to food safety as fossil-based plastics, there are several regulatory issues that need to be considered for new biobased material or new applications for existing materials. These include determining the appropriate food simulants to be used to estimate the potential for migration and demonstrating that the substance is stable for its intended use. In addition, it may be necessary to consider the suitable purity of the finished product with respect to the potential presence of organic matter, such as cellular debris, and naturally occurring contaminants (e.g., mycotoxins and algal biotoxins). 

Recycled Materials. The growing interest in sustainability is also behind recent initiatives by a number of food companies to increase the use of recyclable packaging and the use of post-consumer recycled plastic content in food packaging. Recycled plastic in food packaging must meet the same safety standards as virgin plastic. 

Companies may independently evaluate the status and safety of a polymer produced through a recycling process. However, many companies will submit their determinations to FDA for review through a voluntary program. If FDA agrees with the company’s determination that a given recycling process is adequate to produce suitably pure recycled food-contact material, it will issue a no objection letter (NOL). To assist recyclers, FDA has issued guidance on recycled plastics for use in food packaging, which provides information on how to establish the safety of recycled polymers for food packaging. With respect to secondary (physical reprocessing) and tertiary recycling (regeneration of purified starting materials), FDA stresses the importance of demonstrating that possible contaminants from prior use of the plastic are sufficiently removed by the recycling process. To accomplish this, FDA provides specific recommendation on contaminant testing.

Conclusion

We have provided several examples of new innovations incorporated into food packaging. The use of antimicrobial is just one example of active and intelligent packaging, or packaging that interacts with food or its surroundings to prolong shelf life or monitor the condition of the food, slow the rate of oxidation, and prevent microbial attack. As advances in food packaging technology continue, further regulatory considerations may need to be addressed.

About the Authors:

George Misko is one of Keller and Heckman’s Food and Drug practice group leaders. Mr. Misko’s practice focuses on food and drug matters and environmental concerns, including pesticide regulation, right-to-know laws, and toxic substance control regulations. He has extensive experience counseling clients on regulatory requirements relating to chemical substances, plastics and food products in the U.S. and other jurisdictions, including Canada, the European Union, Latin America, and the Asia-Pacific region. He also represents trade associations, including acting as legal counsel to the Global Silicones Council.

Natalie Rainer practices in the area of food and drug law. She advises clients on regulatory requirements for foods, dietary supplements, cosmetics, and food and drug packaging in jurisdictions around the world, including North America, Latin America, Europe, Asia, and the Middle East. Ms. Rainer’s practice includes evaluating the regulatory status of food-contact materials, food additives, and color additives; advising companies on advertising and labeling requirements (including claim substantiation, nutrition labeling, menu labeling and environmental/green claims); and counseling clients on the Food Safety Modernization Act and its regulations.

Posted on Leave a comment

Digital Traceability: Reducing Risks and Finding Efficiencies

Written by Alex Lewis, Parity Factory Corp.

The ongoing crisis has shed light on the need for innovation in the food space, even in the most fundamental processes.

If someone were to ask you which industries were most important to our daily lives, what would you say? Along with things like communications, construction, and clothing, one of the first things that likely comes to mind is also one of the most basic: food. The agricultural and food processing industries provide for our most key needs and enables our continued growth. It is unlikely anyone would argue against the importance of the food and beverage industry to our society, however 2020 has brought us a loud and clear reminder of just how crucial it is, in the form of the COVID-19 pandemic. 

In just a few short months, food and beverage manufacturers saw demand increases that haven’t been seen in a lifetime. At the time of writing, sectors of the food industry have experienced spikes in volume ranging from 32% in milk, 30-47% across the snack sector, and a staggering 77% increase in demand for meat, and this trend holds true for nearly every vertical within the industry.

The stay-at-home orders announced by most governments have sent consumers rushing to the store, clearing shelves and placing new strain on food and beverage processors. As they struggle to keep up with their order volume, many manufacturers are looking for new ways to improve their efficiency and reduce their liabilities. As it turns out, one of the most effective methods may also be the simplest: digitizing their lot tracing.

What is digital lot tracing?

All food and beverage manufacturers track their lots. In fact, it is one of the basic requirements for running a food processing business, with the specific standards and protocols defined at the federal level by organizations such as the FDA. By requiring tracking of all material that is involved in making a product, down to the packaging used, it ensures that recalls can be performed swiftly and protects the health of the public. Manufacturers manage their tracing using a variety of methods, from pen and paper, to Microsoft Excel, to fully integrated traceability software, with many using a combination of methods. Digital lot tracing simply means that a company is capturing and managing their tracing data on a digital platform, often integrating scanning and barcoding into the process. This approach has a drastically lower error rate than more traditional methods and tends to be significantly more efficient.

Despite tracing being a common daily task that all processors contend with, there has been surprisingly little momentum towards automated lot tracing in food. By some metrics, only 1 in 5 operations have fully automated their lot data capture, with a bit more having partially implemented the process. The food industry has always been slow to adopt new processes, but as demand and competition skyrockets, many are finally feeling the need for an upgrade.

The risks of a recall

Executing recalls, specifically executing them quickly and efficiently, is one of the biggest challenges that food and beverage manufacturers face. Under current FDA guidelines, food and beverage processors need to be able to perform a recall within four hours. Many of the major retailers demand even more of their suppliers; if you want your product on the shelves in a Walmart or Costco, you must be able to perform the same process in as little as two hours. The unfortunate reality is that for processors tracing on paper, particularly those producing at scale, these targets are difficult to hit. Also, the human element involved in manual tracing can allow errors to find their way into data, and this has become especially true for those who are dramatically increasing their throughput to keep up with new demand caused by COVID-19. Without true, reliable data, a recall can quickly go from difficult to impossible.

The consequences of a botched recall can be dire: the average recall costs a manufacturer $10 million, not including possible fines from regulators, or losing the aforementioned Walmart or Costco contract. One of the biggest losses is one that may not be immediately obvious: consumer confidence. Over half of consumers will quit purchasing a product once it has been recalled, and studies have shown that a company’s stock price will typically drop as much as 22% following a major recall. Once that confidence is gone, it can take months or even years to get it back, if it can be regained at all.

All these problems can be mitigated, if not completely prevented, through digital lot tracing. With a capable solution in place, recall times can be measured in minutes, not hours, as a few quick searches replaces shuffling through endless forms to find the lot in question (if it was recorded correctly at all). This guarantees compliance with even the most demanding of rules and regulations and eliminates all fear when inspectors and auditors show up for routine recall tests. In addition, the ability to execute a speedy yet thorough recall when problems arise minimizes the risk to both consumers, and the manufacturer’s reputation. The bottom line: most food manufacturers are going to face a recall at some point. It is crucial to have the systems in place to react appropriately when that time comes.

How does it increase efficiency?

Due to the huge importance of lot tracing, manufacturers using manual systems often have some of their most competent and experienced employees devoted to the task. Even if these staff would be better suited to other areas, it’s just not worth taking the risk of assigning less experienced employees to the job. Digital lot tracing solves this by drastically simplifying the tracing process. Scanning a barcode and letting software do the rest is far quicker, easier, and less error-prone than meticulously creating and tracking hundreds of lot codes by hand. Meaning that you end up spending less time on tracing, and therefore less money, while winding up with data that is significantly more reliable. This both frees up an operation’s most capable employees to pursue new opportunities and allows anyone in the operation to take part in the tracing process. New employees can be trained and onboarded quickly, which is particularly useful for processors hiring huge amounts of new labor in the wake of COVID-19. 

All of this allows for greatly increased flexibility when it comes to staffing, and as COVID-19 turns the industry on its head the value of that flexibility has become crystal clear. While many of us have had the luxury to transition into working from home, that’s just not an option for many working in the food space. When employees are unable to attend work, for example if they are sick, someone else must step in. This can be a major threat to efficiency when the few people in your operation qualified to handle lot tracking are missing. In dealing with turnover and staff redistribution, there’s tangible benefit to having a system that allows employees to be effective, regardless of their experience level. 

For those looking to digitize their lot tracing, there is no shortage of solutions to accomplish that task. However, a sufficiently robust solution should go beyond just traceability. If you are tracking each lot as it moves through your facility, it creates great possibility to capture additional data such as yields, storage locations, and quality information. In this way, digital lot tracing can be viewed as a foundation on which to build even more extensive efficiency improvements. These additional features are some of the most important considerations for any manufacturer to make when choosing between available systems.

Preparing for an uncertain future

COVID-19 has proven that swift, unpredictable changes can happen in any industry, even one as foundational as food and beverage. With new issues such as shifting demographics, climate change, and the variable nature of trade on the horizon, it is likely that changes will become more frequent and even the smallest efficiencies will be essential to thrive.

Customer consciousness is also changing rapidly, and businesses that want to stay competitive have no choice but to change with it. As consumers and regulators demand ever more transparency and accountability from the food industry, reliable tracing data is becoming ever more crucial.

Manufacturers will undoubtedly rise to these new challenges in the future, just as they are rising to the challenges of today. And along the way, many will find a comprehensive digital lot tracing system to be one of their most valuable tools. 

Sources/Further Reading:

Acorn Surfaces & Treatments
for Concrete Restoration Products and Services

Breaux, Randy. “COVID-19 Shows the Need for Automation.” Foodprocessing.com, Food Processing Magazine, 2020, http://www.foodprocessing.com/articles/2020/power-lunch-covid-19-shows-the-need-for-automation/. 

Deloitte. Recall Execution Effectiveness: Collaborative Approaches to Improving Consumer Safety and Confidence. 2010.

Demetrekakes, Pam. “How the Coronavirus Is Affecting Food Processing.” Foodprocessing.com, Food Processing Magazine, 2020, http://www.foodprocessing.com/articles/2020/how-the-coronavirus-is-affecting-food-processing/.

Lelieveld, H. L. M. Hygiene in Food Processing. Woodhead, 2017.

Stier, Richard F. “How Food Processors Can Create a Plan for Traceability and Recalls.” Food Engineering RSS, Food Engineering, 11 May 2020, www.foodengineeringmag.com/articles/98026-how-food-processors-can-create-a-plan-for-traceability-and-recalls.

Torero, Maximo. “How to Stop a Looming Food Crisis.” Foreign Policy, 14 Apr. 2020, foreignpolicy.com/2020/04/14/how-to-stop-food-crisis-coronavirus-economy-trade/.