Posted on

Contents of a Good HACCP Plan & Manual

Written by Safe Food Alliance Team
Originally Published in FOOD SAFETY, HACCP, STARTER SERIES

In today’s food manufacturing environment, basic food safety principles are no longer enough to meet customer and regulatory requirements. The rules have changed, in large part due to the Food Safety Modernization Act (FSMA). In addition to new laws from legislators, the standards and demands of customers now far surpass regulatory requirements. What this means is there is now an expectation to not only master Hazard Analysis Critical Control Points (HACCP) but to go one step further and become Global Food Safety Initiative (GFSI) certified. To gain certification with any of these programs, you need to start in the same place. You start with a HACCP plan.

12 Steps to a Good HACCP Plan

When building out your HACCP plan, follow this specific methodology involving 12 steps. If you are having trouble, just reach out to your friendly neighborhood Safe Food Alliance team.

One thing to remember as you build out your plan – a HACCP Plan is a living document, and as such, should be revisited often as your processes change, your company grows, and you discover better ways to produce your product. Now that we have that covered, let’s begin.

1. Assemble the HACCP Team

Your plan will typically include a table where all the names of the HACCP Team members are written and signed, and the team leader is clearly designated. The team functions best when it’s highly cross-functional and includes members of various departments such as sanitation, maintenance, production, and quality. It’s essential to have these varied perspectives and background knowledge. 

In this section, you should include a brief description of each member’s current position, background, and experience. You’ll also need to have a copy of a HACCP formal training certificate for the HACCP coordinator, from an accredited two-day HACCP course.  There should be some sort of documented HACCP training for the rest of the team as well, whether conducted internally or by someone like us. The more knowledgeable the team, the better the plan will be.

2. Describe the Product

This section should include a full description of each product or family of products within the scope of the plan. Product descriptions should consist of details that impact the food safety of the product, including (as applicable):

  • the recipe or formulation
  • the packing materials and any other information such as the modified atmosphere
  • the conditions in which the product is to be stored (e.g., temperature, light, humidity)
  • the shelf life
  • distribution conditions
  • any potential for abuse in the distribution chain or by consumers, which may put the product at risk.

The better you define the product before starting the hazard analysis, the more thorough the review will be.

3. Identify the Intended Use

The intended use is based on the usual consumption of the commodity by the final consumer or user. Again, defining intended use helps ensure a more thorough hazard analysis later. This section includes both your company’s intended purpose based on product design, as well as potential other applications. The more you know your consumers, the better you can take care of them. A classic example, in this case, is cookie dough: it’s a product you typically cook before consumption, but in some cases, it’s eaten raw. For this reason, several companies have had recalls on their cookie dough due to consumer illness.

4. Construct the Flow Diagram

The process flow diagram must be clear and detailed to describe all process steps. Use this diagram to help ensure the hazard analysis is thorough and as a visual reference as your team considers potential hazards to the consumer. The flow diagram must include every process step that occurs on-site, from the very beginning (e.g., receiving and preparing ingredients, storing packing materials, etc.) to the very end (shipping, warehousing, etc.) The clearer the diagram is to the viewer, the easier to understand the process. Others may also use the table during site visits (e.g., customers, auditors, consultants, regulatory officials). Hence, it’s wise to design it in a way that it’s relatively clear to others who don’t know the process as well as you do.

5. On-Site Verification of the Flow Diagram

On-site verification of the diagram helps ensure its accuracy.  Again, the purpose of this is primarily to ensure a thorough hazard analysis. The site will need to provide proof that the HACCP Team has verified the flow diagram.  Some companies like to keep the first version of the diagram with hand-written notes on it, indicating changes made and initialed and dated by the participants. Ultimately, however, proof of the verification is best done with a final, updated copy that is signed; or meeting minutes indicating approval of the final version and signatures of participants.

6. Conduct a Hazard Analysis

The hazard analysis is part of the plan that typically takes the most time to review and update. Here the team collects and examines all relevant data to the product’s safety, including process performance, product defects, customer complaints, results of internal and third-party audits, and various other relevant information.  The team must take the proper time to conduct a thorough analysis.

A Hazard analysis can vary in format, but needs to include these common elements:

  • List of all process steps and ingredients
  • Identification of potential hazards
  • Assessment of each hazard, with consideration of both severity and likelihood
  • Identification of ‘significant’ hazards
  • Justification of the assessment (detailed explanation as to the team’s reasoning)
  • Identification of appropriate controls for each hazard
  • Now, under FSMA, the identification of any Preventive Controls as well. For more information on this subject, take a look at this article. For training, refer to the PCQI course.

7. Determine Critical Control Points (CCP’s)

This one is a simple concept. Based on the hazard analysis described above, you can quickly identify all significant hazards and CCPs. Critical Control Points are those essential steps designed to control a specific hazard so that the product will be safe to consume. The team should use a decision tree like this one when determining CCPs.

8. Establish Critical Limits for Each CCP

A critical limit is a critical control point’s “go/no go” or “acceptable/unacceptable” criteria.  For some processes, such as metal detection, it is as simple as testing with certified metal test pieces to ensure proper function. For other types of CCPs, it can be much more complex and include parameters such as temperature, humidity, product viscosity, or chemical concentration. All these variables and values have to be clearly defined, including both lower and upper limits, as applicable.

Documents related to the process and relevant sources used to establish the critical limits must be available to support the limits. These documents could be regulatory standards, guidelines, internal or third-party validation, experimental results, literature surveys, and expert guidance. The stricter the validated limits, the higher the potential efficacy.

9. Establish a Monitoring System

This step is where we define the monitoring method for each CCP.  Monitoring is how we ensure the process has met the critical limit, so the product is safe.  The monitoring procedure should contain the following:

  • What will you monitor?
  • How often shall it be monitored?
  • Who is responsible for performing the task?
  • What instruments will you use?
  • How will you monitor? (method)

The clearer the instructions, the fewer chances of failure.

10. Establish Corrective Actions

Each CCP is required to have predetermined and documented corrective actions for deviations that may occur. The corrective actions plan should comprise at least the following elements: the responsibility for each action, disposition of the non-complying product, the correction of the cause of failure, and recording the event. Keep records of activities readily available. If you need help with conducting root cause analysis for your corrective actions, check out our quick root cause analysis course.

11. Establish Verification Procedures

Much of the discussion in our HACCP courses end up centering around how to conduct verification in the context of HACCP properly.  Verification procedures should be activities designed to confirm that the plan is: 1) being followed; 2) effective for its intended use, and 3) adequately maintained. We are looking for defined procedures here, indicating how we conduct routine verification activities like the sign-off of the CCP monitoring records, as well as how you complete the less-frequent validation. The more exhaustive the verification is, the more confident we can be of the plan.  For more on verification, take a look at our article “The 6th Principle of HACCP: Verification”.

12. Establish Documentation and Record-keeping

This final step includes establishing both record-keeping processes and the company’s documentation system (establishing defined procedures, the company’s methods of document control, etc.). Consider:

  • How will you document your system?
  • What should you include?
  • Who is responsible for doing it?
  • How long are you keeping records? Where are you saving them?
  • Who needs to have access to what documents and how are documents controlled?

A better-documented plan helps ensure better execution.

As you may realize by now, developing and documenting an effective HACCP plan is not an easy task. Training on the methodology, experience, and technical elements are essential aspects of effective HACCP Plan implementation. If you need guidance with training or consultation, Safe Food Alliance is here to help.

Posted on Leave a comment

Digital Traceability: Reducing Risks and Finding Efficiencies

Written by Alex Lewis, Parity Factory Corp.

The ongoing crisis has shed light on the need for innovation in the food space, even in the most fundamental processes.

If someone were to ask you which industries were most important to our daily lives, what would you say? Along with things like communications, construction, and clothing, one of the first things that likely comes to mind is also one of the most basic: food. The agricultural and food processing industries provide for our most key needs and enables our continued growth. It is unlikely anyone would argue against the importance of the food and beverage industry to our society, however 2020 has brought us a loud and clear reminder of just how crucial it is, in the form of the COVID-19 pandemic. 

In just a few short months, food and beverage manufacturers saw demand increases that haven’t been seen in a lifetime. At the time of writing, sectors of the food industry have experienced spikes in volume ranging from 32% in milk, 30-47% across the snack sector, and a staggering 77% increase in demand for meat, and this trend holds true for nearly every vertical within the industry.

The stay-at-home orders announced by most governments have sent consumers rushing to the store, clearing shelves and placing new strain on food and beverage processors. As they struggle to keep up with their order volume, many manufacturers are looking for new ways to improve their efficiency and reduce their liabilities. As it turns out, one of the most effective methods may also be the simplest: digitizing their lot tracing.

What is digital lot tracing?

All food and beverage manufacturers track their lots. In fact, it is one of the basic requirements for running a food processing business, with the specific standards and protocols defined at the federal level by organizations such as the FDA. By requiring tracking of all material that is involved in making a product, down to the packaging used, it ensures that recalls can be performed swiftly and protects the health of the public. Manufacturers manage their tracing using a variety of methods, from pen and paper, to Microsoft Excel, to fully integrated traceability software, with many using a combination of methods. Digital lot tracing simply means that a company is capturing and managing their tracing data on a digital platform, often integrating scanning and barcoding into the process. This approach has a drastically lower error rate than more traditional methods and tends to be significantly more efficient.

Despite tracing being a common daily task that all processors contend with, there has been surprisingly little momentum towards automated lot tracing in food. By some metrics, only 1 in 5 operations have fully automated their lot data capture, with a bit more having partially implemented the process. The food industry has always been slow to adopt new processes, but as demand and competition skyrockets, many are finally feeling the need for an upgrade.

The risks of a recall

Executing recalls, specifically executing them quickly and efficiently, is one of the biggest challenges that food and beverage manufacturers face. Under current FDA guidelines, food and beverage processors need to be able to perform a recall within four hours. Many of the major retailers demand even more of their suppliers; if you want your product on the shelves in a Walmart or Costco, you must be able to perform the same process in as little as two hours. The unfortunate reality is that for processors tracing on paper, particularly those producing at scale, these targets are difficult to hit. Also, the human element involved in manual tracing can allow errors to find their way into data, and this has become especially true for those who are dramatically increasing their throughput to keep up with new demand caused by COVID-19. Without true, reliable data, a recall can quickly go from difficult to impossible.

The consequences of a botched recall can be dire: the average recall costs a manufacturer $10 million, not including possible fines from regulators, or losing the aforementioned Walmart or Costco contract. One of the biggest losses is one that may not be immediately obvious: consumer confidence. Over half of consumers will quit purchasing a product once it has been recalled, and studies have shown that a company’s stock price will typically drop as much as 22% following a major recall. Once that confidence is gone, it can take months or even years to get it back, if it can be regained at all.

All these problems can be mitigated, if not completely prevented, through digital lot tracing. With a capable solution in place, recall times can be measured in minutes, not hours, as a few quick searches replaces shuffling through endless forms to find the lot in question (if it was recorded correctly at all). This guarantees compliance with even the most demanding of rules and regulations and eliminates all fear when inspectors and auditors show up for routine recall tests. In addition, the ability to execute a speedy yet thorough recall when problems arise minimizes the risk to both consumers, and the manufacturer’s reputation. The bottom line: most food manufacturers are going to face a recall at some point. It is crucial to have the systems in place to react appropriately when that time comes.

How does it increase efficiency?

Due to the huge importance of lot tracing, manufacturers using manual systems often have some of their most competent and experienced employees devoted to the task. Even if these staff would be better suited to other areas, it’s just not worth taking the risk of assigning less experienced employees to the job. Digital lot tracing solves this by drastically simplifying the tracing process. Scanning a barcode and letting software do the rest is far quicker, easier, and less error-prone than meticulously creating and tracking hundreds of lot codes by hand. Meaning that you end up spending less time on tracing, and therefore less money, while winding up with data that is significantly more reliable. This both frees up an operation’s most capable employees to pursue new opportunities and allows anyone in the operation to take part in the tracing process. New employees can be trained and onboarded quickly, which is particularly useful for processors hiring huge amounts of new labor in the wake of COVID-19. 

All of this allows for greatly increased flexibility when it comes to staffing, and as COVID-19 turns the industry on its head the value of that flexibility has become crystal clear. While many of us have had the luxury to transition into working from home, that’s just not an option for many working in the food space. When employees are unable to attend work, for example if they are sick, someone else must step in. This can be a major threat to efficiency when the few people in your operation qualified to handle lot tracking are missing. In dealing with turnover and staff redistribution, there’s tangible benefit to having a system that allows employees to be effective, regardless of their experience level. 

For those looking to digitize their lot tracing, there is no shortage of solutions to accomplish that task. However, a sufficiently robust solution should go beyond just traceability. If you are tracking each lot as it moves through your facility, it creates great possibility to capture additional data such as yields, storage locations, and quality information. In this way, digital lot tracing can be viewed as a foundation on which to build even more extensive efficiency improvements. These additional features are some of the most important considerations for any manufacturer to make when choosing between available systems.

Preparing for an uncertain future

COVID-19 has proven that swift, unpredictable changes can happen in any industry, even one as foundational as food and beverage. With new issues such as shifting demographics, climate change, and the variable nature of trade on the horizon, it is likely that changes will become more frequent and even the smallest efficiencies will be essential to thrive.

Customer consciousness is also changing rapidly, and businesses that want to stay competitive have no choice but to change with it. As consumers and regulators demand ever more transparency and accountability from the food industry, reliable tracing data is becoming ever more crucial.

Manufacturers will undoubtedly rise to these new challenges in the future, just as they are rising to the challenges of today. And along the way, many will find a comprehensive digital lot tracing system to be one of their most valuable tools. 

Sources/Further Reading:

Acorn Surfaces & Treatments
for Concrete Restoration Products and Services

Breaux, Randy. “COVID-19 Shows the Need for Automation.” Foodprocessing.com, Food Processing Magazine, 2020, http://www.foodprocessing.com/articles/2020/power-lunch-covid-19-shows-the-need-for-automation/. 

Deloitte. Recall Execution Effectiveness: Collaborative Approaches to Improving Consumer Safety and Confidence. 2010.

Demetrekakes, Pam. “How the Coronavirus Is Affecting Food Processing.” Foodprocessing.com, Food Processing Magazine, 2020, http://www.foodprocessing.com/articles/2020/how-the-coronavirus-is-affecting-food-processing/.

Lelieveld, H. L. M. Hygiene in Food Processing. Woodhead, 2017.

Stier, Richard F. “How Food Processors Can Create a Plan for Traceability and Recalls.” Food Engineering RSS, Food Engineering, 11 May 2020, www.foodengineeringmag.com/articles/98026-how-food-processors-can-create-a-plan-for-traceability-and-recalls.

Torero, Maximo. “How to Stop a Looming Food Crisis.” Foreign Policy, 14 Apr. 2020, foreignpolicy.com/2020/04/14/how-to-stop-food-crisis-coronavirus-economy-trade/.